
So�ware Development (cs2500)

Lecture 34: Interfaces

M.R.C. van Dongen

January 17, 2011

Contents
1 Outline 1

2 Polymorphism 2

3 Multiple Inheritance 3
3.1 Option I . 3

3.2 Option II . 4

3.3 Option III . 4

3.4 Option IV . 5

3.5 �e Diamond Problem . 5

4 Interfaces 5
4.1 Using Interfaces . 6

4.2 Creating an Interface . 6

4.3 Implementing an Interface . 7

4.4 Extending an Interface . 7

4.5 Template Classes . 8

4.6 Delegation . 8

4.7 What the Experts Say . 9

5 ForWednesday 9

6 Bibliography 10

1 Outline
Today’s lecture starts by �nishing our study of polymorphism. We shall continue by studying multiple
inheritance. We shall �nish by studying interfaces.

1

2 Polymorphism
�is section completes our investigation of polymorphism. It starts by recalling some of the theory from

the previous lecture. �is is continued by explaining the relationship between object reference type, the

type of the referenced instance, and the instance methods which are available using the object reference.

We’ve already seen that the following doesn’t work. According to the method’s signature, copy()
returns an Object reference and as far as the compiler is concerned that’s all it knows. �e �rst two

assignments are �ne, but the third is not: Java only lets you assign a (sub)〈class〉 reference value to a

given 〈class〉 reference variable.

public static void main(String[] args) {
Cat felix = new Cat();
Object copy = copy(felix);
Cat copyCat = copy(felix);

}

private static Object copy(Object object) {
return object;

}

Don’t Try this at Home

�e following does work because of the (Liskov) substitution principle, which says that if a reference

is expected of an instance of a certain class then you may substitute a reference to an instance of any

subclass of that class.

public static void main(String[] args) {
Cat felix = new Cat();
Object copyCat = felix;

}

Java

�e following also doesn’t work. �e reason why this doesn’t work is that the compiler’s decision

whether you can use a method is based on the object reference type, not on the actual instance type. Here

the reference type is Object and the Object class does not de�ne the instance method makeNoise.

public static void main(String[] args) {
Cat felix = new Cat();
Object copyCat = felix;
object.makeNoise();

}

Don’t Try this at Home

�e following shows the general technique to overcome the previous problem. We have two options.

1. We assign the object reference to a Cat object reference variable and use this variable to invoke the

method makeNoise(). To do this we �rst convince the compiler that this is ok. We do this by

casting the Object reference which is returned by the expression copyCat to a Cat reference.

2. We don’t use the assignment but call the method on the expression which “does” the casting.

�e following demonstrates both techniques in one example.

2

public static void main(String[] args) {
Cat felix = new Cat();
Object copyCat = felix;
Cat copy = (Cat)copyCat;
copy.makeNoise();
((Cat).copyCat).makeNoise();

}

Java

* * *

We shall �nish this section by once more recalling the basic rules which are used to determine which

instance methods we can use when working with polymorphic reference variables.

Consider a class Class. Let SubClass be a subclass of Class. Furthermore, let’s assume we have two

variables: Class super, and SubClass sub. Finally, let’s assume that sub references a SubClass instance.

Polymorphism and the substitution principle lets us assign the value of sub to super.

SubClass sub = new SubClass;
Class super = sub;

Java

• Using sub we can use all SubClass-speci�c instance methods/attributes.

• Using super we can’t: the compiler uses the reference type to determine which methods/attributes

can be used and not the type of the referenced object.

• Using super we can use all Class-speci�c instance methods/attributes.

• By inheritance, sub also lets us use them.

• Using our remote control analogy, we may regard super as a cheaper version of remote control.

Both remotes have the buttons for the Class instance methods/attributes. Only sub has the buttons

for the SubClass instance methods/attributes.

3 Multiple Inheritance
In this section we shall study multiple inheritance, which involves having several immediate superclasses.

We shall start with a case study which demonstrates what happens if we want to add some functionality

to the Dog and Cat classes of our Fota application. Next we shall study multiple inheritance.

In our case study we are going to add a method void beFriendly() for pets (Dog and Cat objects) in

our Fota application. We’re going to look at four di�erent ways to achieve our goal. As we shall see, each

of them has their own advantages and disadvantages. In the next section we shall do it the proper way.

3.1 Adding the PetMethod to the AnimalClass
As our �rst option we may decide to add the Pet method to the Animal class. �e following are some

advantages and disadvantages:

3

Pros: �e are two main advantages: (1) all Pets will inherit Pet behaviour, and (2) Animal can act as a

polymorphic type for Pets.

Cons: �ere are also disadvantages: (1) all non-Pets will also get beFriendly() behaviour, and (2) more

than likely we’ll have to override the beFriendly() method in the Dog and Cat classes because

Dogs and Cats have di�erent friendly behaviour. �en again, it is probably unavoidable that we have

to provide di�erent overrides for this method in the Dog and the Cat class.

Conclusion: Clearly the disadvantages—especially (1)—outweigh the advantages.

Cause: �e reason for the bad design is that the Is-A test fails for non-Pets. For example, the test Hippo
is-an Animal makes no sense if each Animal is supposed to have an instance method beFriendly().

3.2 Making AnimalClass Abstract
For our second option we also decide to add the Pet method to the Animal class. However, this time we

make the Animal class abstract and make beFriendly() an abstract method. �e following are some

advantages and disadvantages:

Pros: �e advantages are better than before. �is time we are forced to properly implement beFriendly(
) for Pet and non-Pet classes. For example, we cannot forget implement the method as it is abstract

and has to be implemented for the concrete classes CaT and Dog. As with the previous design, Animal
can act as a polymorphic type for Pets.

Cons: Our major disadvantage is that we must override beFriendly() for all concrete classes.

Conclusion: �is design is worse than Option I.

Cause: �e reason for the bad design is that with this design the Is-A test fails for non-Pets.

3.3 Putting the PetMethod where it Belongs
For our third option we only add the Pet method to the Dog and Cat classes. However, we do not provide

a superclass de�ning the method beFriendly(). �e following are some advantages and disadvantages:

Pros: �e following are some advantages. �is time beFriendly() is only needed in the classes where

it belongs. Implementing beFriendly() requires little e�ort. As a consequence all Animals now

behave properly.

Cons: �e following are some disadvantages. (1) �e method beFriendly() not being abstract, the

compiler cannot help us implement it properly. For example, we may implement the method as

‘public void beFriendly()’ in the Cat class but as ‘public void befriendly()’ in the Dog class.

�e de�nition of the method in the Dog class has a typo. As a result, the Cat and Dog classes fail to

implement the common protocol. (2) �e main disadvantage is that we lose a proper polymorphic

type for Pets. Even if we use Object or Animal as a polymorphic for Pets we still won’t have an easy

way to call Pet-speci�c methods.

4

Conclusion: �is design makes Pets di�cult to work with.

Cause: �e reason why this design fails is that it is incapable of providing polymorphism, which makes

most applications “tick”.

3.4 Two Superclasses for Pets
As a fourth (hypothetical) option we may decide to introduce an abstract Pet class and make it a second

superclass of the Cat and Dog classes.

Pros: �e following are the advantages. �e beFriendly() method is where it belongs. Implementing

beFriendly() requires little e�ort. A clever compiler should be able to help us properly override

beFriendly(). Most importantly, Pet can act as a polymorphic type for pets.

Cons: �e main disadvantage is that in Java a class can have no more than one immediate superclass.

Languages which do support more than one immediate superclass are said to support multiple
inheritance.

Conclusion: �is design is ideal but impossible.

Cause: A decision of the Java language designers.

3.5 Why is Multiple Inheritance Not Allowed?
�e last section showed that Java does not allow multiple inheritance. As a matter of fact there are at

least two good reason for disallowing multiple inheritance. �ese reasons are best explained by studying

the class diagram which is depicted in Figure 1.

�e �rst reason for disallowing multiple inheritance in a class design like this is that it is very messy

to allow CDBurner and DVDBurner have access to the shared variable i. For example, both classes may

have di�erent assumptions about the allowed values for this variable. Furthermore, the classes have no

means to “communicate” with each other, which makes it impossible to enforce any invariants even if the

two classes wanted to. If we allow this kind of shared access, we might just as well make all our variables

public.

A second disadvantage is that it is not immediately clear which of the methods burn should be

inherited if the class ComboDrive doesn’t override burn(). Should it be the method from CDBurner
or should it be the method from DVDBurner? To allow multiple inheritance one needs extra rules or

notation to decide which method is inherited. Arguably this is a disadvantage because it makes it more

di�cult to learn the resulting language and use it without making errors.

4 Interfaces
A Java interface is like an abstract class. However, interfaces basically have no implementation. �ey can

only have: abstract instance methods, and class attributes. �e methods and attributes of an interface

cannot be private. We shall see shortly that interfaces resolve the multiple inheritance problem.

5

DigitalRecorder
int i
burn()

CDBurner

// uses i
// overrides burn

DVDBurner

// uses i
// overrides burn

ComboDrive

// may override burn

Figure 1: Deadly diamond of death (diamond problem)

4.1 Using Interfaces
Using interfaces is as easy as using abstract classes. For simplicity we shall only allow (abstract) methods

in our interfaces.

Creating: You create the interface by writing the abstract interface methods in the body of the �le that

de�nes the interface.

Implementing: �e result of implementing an interface is a class. It is analogous to extending an abstract

class and implementing all abstract methods which are de�ned in the abstract class.

• You override abstract methods which are de�ned in the interfaces which are implemented by

the class. If the class is concrete then you override all abstract methods.

• �e new interface now acts as a “subclass” of the interface.

Extending: �e result of extending an interface is another interface. It is analogous to writing an abstract

class that extends an abstract class.

• You add zero or more new abstract methods.

• �e new interface now acts as a “sub-interface” of the interface.

4.2 Creating an Interface
You create a Java interface just like you write an abstract Java class. However, this time you use the

keyword interface instead of class.

6

public interface Pet {
public void beFriendly();

}

Java

4.3 Implementing an Interface
�e result of implementing an interface is a class. �e resulting class is concrete it should override all

abstract methods of the interface. If it is abstract you may override any number of abstract methods.

Given the interface Pet from the previous example you can implement it by de�ning a class which

overrides the abstract method beFriendly which is de�ned by the interface.

Let’s see how this works by implementing a class Dog which implements the interface Pet. �is

works just as extending an (abstract) class Pet. When you extend a class you write extends. When you

implement an interface you write implements.

public class Dog implements Pet {
@Override
public void beFriendly() {

System.out.println("Be excited when master arrives.");
}

}

Java

4.4 Extending an Interface
An interface is extended by de�ning a new interface which de�nes zero or more new abstract methods.

Given the interface Pet from the previous example you can extend it by writing a new interface which

de�nes one or several abstract methods.

Let’s see how this works and extend the interface Pet by de�ning a new interface called LostPet
which de�nes a new abstract method. Speci�cally, the interface de�nes a method hasBeenFound which

returns true if the lost Pet has been found and a method getPoundName which returns the name of the

pound the found Pet is in. �is time you use the keyword extends.

public interface LostPet extends Pet {
public boolean hasBeenFound();
public String getPoundName();

}

Java

You can extend or implement one or several interfaces. You can also combine this with the extension

of one class.

public class Cat extends Animal implements Pet {
…

}

Java

7

4.5 “Abstract” Template Interfaces
No doubt you’ve already noticed: interfaces don’t really allow you to share common code. Fortunately,

there’s a very easy way to overcome this problem: use an abstract class that implements one or several

interfaces. �is technique is commonly used in the Java collections.

To see how this works, consider the following source code.

public abstract class AbstractPet implements Pet {
@Override
public void beFriendly() {

System.out.println("I’m so excited.");
System.out.println("And I just can’t hide it.");

}
}

Java

We can now use this abstract class as the basis for the implementation of a Cat and Dog class. We

simply extend the abstract class and all code is immediately inherited. Both resulting classes share the

code from the abstract class. �e following is an example. (For simplicity we’re not letting the classes

extend the Animal class.)

public class Dog extends AbstractPet {
public void makeNoise() {

System.out.println("Arf. Arf.");
}

}

Java

public class Cat extends AbstractPet {
public void makeNoise() {

System.out.println("Mew. Mew.");
}

}

Java

4.6 Delegation
You may not have noticed it but by extending the abstract class AbstractPet in the Dog and Cat classes at

the end of the previous section the two classes lose the right to extend other classes. For example, the

classes are now no longer allowed to extend the Animal class. �is section shows how we may extend a

class while at the same time implement an interface with the default behaviour for that interface.

As with the last example we’ll use the AbstractPet class for the default behaviour. With some

modi�cation, you can also use this technique to “extend” several superclasses. �e following demonstrates

the technique.

8

public class Dog extends Animal implements Pet {
private final Pet gopher = new AbstractPet();

@Override
public void makeNoise() {

// This is Animal behaviour.
System.out.println("Arf. Arf.");

}

@Override
public void beFriendly() {

// This is Pet behaviour.
gopher.beFriendly();

}
}

Java

We introduce a private Pet reference variable gopher and assign it some concrete (polymorphic) Pet
reference. In our example the concrete Pet reference is an AbstractPet reference, but in general other

concrete Pet references may also work. By initialising gopher this way it references an object which has

all default Pet behaviour.

To implement Pet behaviour, we simply delegate the work to the object which is referenced by gopher.

In this example, we simply call gopher.beFriendly() in the de�nition of beFriendly. �is general

technique of delegation is very useful.

Further information about abstract template classes may be found in [Bloch, 2008, Item 18].

4.7 What the Experts Say
Interfaces don’t depend on an implementation. �at’s why they are more �exible to use than classes. �e

advantage of interfaces is well known by the experts in the �eld:

• Coding to an interface, rather than to an implementation, makes your code easier to extend [McLaugh-

lin et al., 2007, Page 224].

• By coding to an interface, you reduce the dependencies between di�erent parts in your implemen-

tation … and “loosely coupled” is a good thing [McLaughlin et al., 2007, Page 282].

• Prefer interfaces to abstract classes [Bloch, 2008, Item 18].

5 ForWednesday
Study the lecture notes, and study Chapter 8.

9

6 Bibliography

References
[Bloch, 2008] Joshua Bloch. E�ective Java. Addison–Wesley, 2008.

[McLaughlin et al., 2007] Brett D. McLaughlin, Gary Pollice, and David West. Head First Object-
Oriented Analysis & Design. O’Reilly, 2007.

10

	Outline
	Polymorphism
	Multiple Inheritance
	Option I
	Option II
	Option III
	Option IV
	The Diamond Problem

	Interfaces
	Using Interfaces
	Creating an Interface
	Implementing an Interface
	Extending an Interface
	Template Classes
	Delegation
	What the Experts Say

	For Wednesday
	Bibliography

